姓名:马杭
办公室:宝山校区(HE306c)
通信地址:上海市上大路99号HE楼,邮编:200444
电子邮件:hangma@shu.edu.cn
工作经历
2018/01至今,上海大学,力学与工程科学学院,教授,博士生导师
2017/06-2017/07英国伦敦大学玛丽女王学院,工程与材料科学学院,访问学者
2015/07-2015/08美国辛辛那提大学,机械与材料工程系,访问学者
2012/01-2012/02澳大利亚昆士兰科技大学,科学与工程学院,访问学者
2007/06-2007/08澳大利亚国立大学,工程系,访问学者
2003/10-2004/02澳大利亚悉尼大学,航空航天与机械电子工程系,访问学者
2000/01-2019/06上海大学,理学院力学系,教授,博士生导师
1988/08-1989/07日本金属材料技术研究所,组织制御部,研修员
1985/07-1999/12兰州理工大学,机械/焊接/材料工程系,历任讲师(1987/09)、副教授(1993/12)、教授(1997/06)、博士生导师(1999/07)
1982/03-1982/08银川起重机器厂,工艺员
1970/03-1978/02宁夏西北煤矿机械二厂,工人
1968/10-1970/02宁夏泾源县兴盛公社,知青
教育经历
1997/10-1998/10日本名古屋大学情报文化学部计算固体力学博士(PhD)
1982/09-1985/07清华大学焊接强度与断裂工学硕士
1978/03-1982/02西安交通大学焊接工艺及设备工学学士
研究方向
计算固体力学;
实验固体力学;
发表论文
[1] He DH, Guo Z, Ma H. Penny-shaped crack simulation with a single high order smooth boundary element. Engineering Analysis with Boundary Elements 2021, 124: 211-220.
[2]马杭,马永其,丁伟东,丁超.浅议梁的强度与刚度的关系.力学与实践, 2020,42(5):617-621.
[3] He DH, Ma H. Simulation of solids with multiple rectangular inhomogeneities using non-uniform eigenstrain formulation of BIEs. Engineering Analysis with Boundary Elements 2020, 120: 38-51.
[4]周吉成,和东宏,马杭.本征边界积分方程法模拟含流体粒子固体的性能.上海大学学报(自然科学版), 2020, 26(5):790-801.
[5] Ma H, He DH, Tian Y. High order isoparametric elements in boundary element method—smooth spheroidal element. Engineering Analysis with Boundary Elements 2019, 104: 34-35.
[6] Ma H, Zhou JC, He DH. Eigenstrain formulation of boundary integral equations for modeling 2D solids with fluid-filled pores. Engineering Analysis with Boundary Elements 2019, 104: 160-169.
[7] Ma H, Tian Y, He DH. High order isoparametric elements in boundary element method—smooth elliptical element. Engineering Analysis with Boundary Elements 2019, 101: 37-47.
[8] He DH, Ma H. Simulate three dimensional solids with fluid-filled pores using eigenstrain formulation of boundary integral equation. Computer Modeling in Engineering & Sciences 2019, 118(1): 15-40.
[9] Tang YJ, Ma H, Yan C. Local Eshelby matrix in eigen-variable boundary integral equations for solids with particles and cracks in full space. Engineering Analysis with Boundary Elements 2016, 71(10):59-69.
[10] Guo Z, Liu YJ, Ma H, Huang S. A fast multipole boundary element method for modeling 2-D multiple crack problems with constant elements. Engineering Analysis with Boundary Elements 2014, 47(1):1-9.
[11] Ma H, Yan C, Qin QH. Eigenstrain boundary integral equations with local Eshelby matrix for stress analysis of ellipsoidal particles. Mathematical Problems in Engineering 2014 (Article ID 947205): 1-10.
[12] Ma H, Guo Z, Dhanasekar M, Yan C, Liu YJ. Efficient solution of multiple cracks in great number using eigen COD boundary integral equations with iteration procedure. Engineering Analysis with Boundary Elements 2013, 37(3):487-500.
[13] Ma H, Guo Z, Yan C, Dhanasekar M. Numerical solution of stress intensity factors of multiple cracks in great number with eigen COD boundary integral equations. Australian Journal of Mechanical Engineering 2013, 11(1):1-10.
[14] Ma H, Wang Y, Qin QH. Determination of welding residual stresses by inverse approach with eigenstrain formulations of BIE. Applicable Analysis 2012, 91(4):807-821.
[15] Ma H, Guo Z, Qin QH. Two-dimensional polynomial eigenstrain formulation of boundary integral equation with numerical verification. Applied Mathematics and Mechanics 2011, 32(5): 551-562.
[16] Ma H, Fang JB, Qin QH. Simulation of ellipsoidal particle-reinforced materials with eigenstrain formulation of 3D BIE. Advances in Engineering Software 2011, 42(10): 750-759.
[17] Guo Z, Ma H. Solution of stress intensity factors of multiple cracks in plane elasticity with eigen COD formulation of boundary integral equation. Journal of Shanghai University 2011, 15(3):173-179.
[18] Ma H, Zhou J, Qin QH. Boundary point method for linear elasticity using constant and quadratic moving elements. Advances in Engineering Software 2010, 41(3): 480-488.
[19] Ma H, Yan C, Qin QH. Eigenstrain formulation of boundary integral equations for modeling particle-reinforced composites. Engineering Analysis with Boundary Elements 2009, 33(3): 410-419.
[20] Ma H, Xia LW, Qin QH. Computational model for short-fiber composites with eigen-strain formulation of boundary integral equations. Applied Mathematics and Mechanics 2008, 29(6): 757-767.
[21] Ma H, Qin QH. An interpolation-based local differential quadrature method to solve partial differential equations using irregularly distributed nodes. Communications in Numerical Methods in Engineering 2008, 24(7): 573–584.
[22] Ma H, Qin QH. Solving potential problems by a boundary-type meshless method—the boundary point method based on BIE. Engineering Analysis with Boundary Elements 2007, 31(9): 749-761.
[23] Ma H, Yin F, Qin QH. Performance and numerical behaviors of the second-order scheme of precise time-step integration for transient dynamic analysis. Numerical Methods for Partial Differential Equations 2007, 23(6), 1301-1320.
[24] Ma H, Qin QH. Boundary integral equation supported differential quadrature method to solve problems over irregular geometries. Computational Mechanics 2005, 36(1): 21-33.
[25] Ma H, Qin QH. A second-order scheme for integration of one-dimensional dynamic analysis, Computers & Mathematics with Applications 2005, 49(2-3): 239-252.
[26] Huang X, Ma H, Cheng CJ. Software development for digital control of WDW series testing machine and measurement of K1c. Journal of Shanghai University 2005, 9(1): 58-61.
[27] Ma H, Kamiya N. Approximate formulation of the hypersingular boundary integral equation in potential theory. Engineering Analysis with Boundary Elements 2004, 28(8): 945-953.
[28]尹峰,马杭.不规则边界上的近似超奇性边界积分方程.飞机设计2004, 1: 26-30.
[29] Ma H, Kamiya N. Nearly singular approximations of CPV integrals with end- and corner-singularities for the numerical solution of hypersingular boundary integral equations. Engineering Analysis with Boundary Elements 2003, 27(6): 625-637.
[30] Ma H, Kamiya N. Distance transformation for the numerical evaluation of near singular boundary integrals with various kernels in boundary element method. Engineering Analysis with Boundary Elements 2002, 26(4): 329-339.
[31] Ma H, Kamiya N. A general algorithm for the numerical evaluation of nearly singular boundary integrals of various orders for two- and three-dimensional elasticity. Computational Mechanics 2002, 29(4-5): 277-288.
[32] Ma H. Geometric conversion approach for the numerical evaluation of hypersingular and nearly hypersingular boundary integrals over curved surface boundary elements. Journal of Shanghai University 2002, 6(2): 101-110.
[33] Ma H, Kamiya N. A general algorithm for accurate computation of field variables and its derivatives near boundary in BEM. Engineering Analysis with Boundary Elements 2001, 25(10): 843-849.
[34]孟晓梅,马杭.单试样法测金属材料JR曲线及其条件起裂值.实验力学2001, 16(1): 61-65.
[35] Ma H, Kamiya N. Domain supplemental approach to avoid boundary layer effect of BEM in elasticity. Engineering Analysis with Boundary Elements, 1999, 23(3):281-284.
[36] Ma H. The effect of stress triaxiality on the local cleavage fracture stress in a granular bainitic weld metal. International Journal of Fracture, 1998, 89(2):143-157.
[37] Ma H, Deng HL. Nondestructive determination of welding residual stresses by boundary element method. Advances in Engineering Software, 1998, 29(2):89-95.
[38]马杭,朱亮,刘萍,王政,沈风刚.关于防轴窜焊接滚轮架的研究,焊接学报1998, 19:78-82.
[39] Ma H, Kamiya N. Boundary-type integral formulation of domain variables for three- dimensional initial strain problems. JSCE Journal of Applied Mechanics, 1998, 1:355-364.
[40] Ma H, Kamiya N, Xu SQ. Complete polynomial expansion of domain variables at boundary for two-dimensional elasto-plastic problems. Engineering Analysis with Boundary Elements, 1998, 21(3):271-275.
[41]马杭,路文江.焊缝金属温预载效应的实验研究,理化检验(物理分册)1997, 33(1):20-22.
[42]马杭,刘天佐,赵文军.钢材及焊接热影响区中低周疲劳裂纹扩展的原位观察,机械工程材料1997, 21(3):10-12.
[43] Chen JH, Wang GZ, Yan C, Ma H, Zhu L. Advances in the mechanism of cleavage fracture of low alloy steel at low temperature. Part I: Critical event. International Journal of Fracture 1997, 83: 105–120.
[44] Chen JH, Wang GZ, Yan C, Ma H, Zhu L. Advances in the mechanism of cleavage fracture of low alloy steel at low temperature. Part II: Fracture model. International Journal of Fracture 1997, 83: 121-138.
[45] Chen JH, Wang GZ, Yan C, Ma H, Zhu L. Advances in the mechanism of cleavage fracture of low alloy steel at low temperature. Part III: Local fracture stress σf. International Journal of Fracture 1997, 83: 139–157.
[46]马杭,赵文军.低温下钢材应变强化系数的测定,理化检验(物理分册)1996, 32(3):41-42.
[47] Ma H, Zhu L, Wang Z. Unified correlation in transition temperatures of low alloy steels and weld metals of various toughness. Fatigue & Fracture of Engineering Materials & Structures, 1996, 19(12):1459-1470.
[48]马杭,李晓耀,刘风跃. WCF-62厚板的低温冲击断裂性能,机械工程材料1996, 20(2):49-51.
[49]马杭,陈剑虹,朱亮.球形非金属夹杂物与焊缝金属的断裂,理化检验(物理分册)1995, 31(1):29-32.
[50] Ma H, Wang Z, Zhu L. The measurement of J-R curves and J-integral values at crack initiations for metallic materials with three curve method of single specimen. International Journal of Fracture, 1994, 68(1):45-54.
[51] Ma H. A predictor-corrector approach based on the self-response factor for initial strain boundary element method to solve elasto-plastic problems. Advances in Engineering Software, 1994,20(1):49-53.
[52]马杭,朱亮,王政,黄万安.金属材料J-R曲线及条件起裂值的单试样三曲线法,机械强度1994, 16(2): 16-19.
[53] Ma H, Okada A. Computation of GMAW welding heat transfer with boundary element method. Advances in Engineering Software, 1993, 16(1):1-5. (EI: 1993, 31(9):123197)
[54]马杭,朱亮,王政. C-Mn钢的延性断裂过程及其对脆断的影响,理化检验(物理分册)1993, 29(6):24-27.
[55]马杭,王政,朱亮.单试样三曲线法测定J积分阻力曲线及条件起裂值,实验力学1993, 8(2):187-191.
[56]马杭,王政,朱亮.焊缝金属裂纹试样的断裂分析,理化检验(物理分册)1993, 29(4):13-16.
[57]马杭,王政,朱亮.测定COD阻力曲线的单试样三曲线分析法,实验力学1992, 7(3):257-263.
[58]马杭,王政,李爱玲. J-R阻力曲线的单试样三曲线分析法,物理测试1992, 2:47-51.
[59]马杭,王政,李爱玲.正火态焊缝金属的断裂行为,物理测试1991, 5:16-19.
[60]马杭.边界元初应变法弹塑性分析的预测-校正迭代法,上海力学1991, 12(3):28-35.
[61]马杭,王政,朱亮.中低强钢和焊缝金属Charpy-V与COD转变温度的相关关系,焊接学报1991, 12(4):239-246.
[62] Chen JH, Ma H, Wang GZ. Fracture behavior of C-Mn steel and weld metal in notched and precracked specimens, Part 1: Mechanical properties. Metallurgical Transactions, 1990, 21A(2): 313-320.
[63] Chen JH, Wang GZ, Ma H. Fracture behavior of C-Mn steel and weld metal in notched and precracked specimens, Part 2: Micromechanism of fracture. Metallurgical Transactions, 1990, 21A(2): 321-330.
[64] Chen JH, Zhu L, Ma H. On the scattering of the local cleavage fracture stress. Acta Metallurgica et Materialia, 1990, 38(12):2527-2535.
[65]马杭.边界变换法求边界近旁的应力,力学与实践1990, 12(3):39-40.
[66]马杭.确定缺口冲击试样韧带屈服载荷的割线法,物理测试1988, 3:17-20.
[67]马杭,王政,朱亮.关于Charpy示波冲击的载荷-位移全曲线,理化检验(物理分册)1988, 24(5):23-25.
著作
[1]马杭.焊接中的边界单元法,上海大学出版社, 2001年(ISBN 7-81058-273-9).
[2]马杭.工程力学实验,上海大学出版社, 2006年(ISBN 7-81058-987-3/O.306).
会议论文
[1] Ma H, He DH, Guo Z. Modeling penny-shaped crack using a single high order smooth element. Proceedings of the 10th International Conference on Computational Methods, 9th-13th July 2019, Singapore, ScienTech Publisher, (ISSN 2374-3948, online).
[2] Ma H, He DH. On the construction and use of high-order boundary element. 14th U.S.National Congress for Computational Mechanics, Montreal, Canada, July 17-20, 2017.
[3] Ma H, Zhou JC. Formulation of boundary integrals with eigenstrains in 3-D eigenstrain BIE. Book of Papers of ICTAM2016, pp2943-2944, The 24th International Congress of Theoretical and Applied Mechanics, Montreal, Canada, August 21-26, 2016.
[4] Ma H, Tang YJ. Computation of Stress Intensity Factors of Cracks in Particle and Matrix with Dual Boundary Integral Equations. Proceedings of the ICOME 2015, pp60-61, 5th Asia-Pacific International Conference on Computational Methods in Engineering and the 11th Chinese National Conference on Computational Methods in Engineering, Hangzhou, China, October 11-13, 2015.
[5] Ma H. Numerical verification of local Eshelby matrix in 2-D eigen-variable boundary integral equations for particles/cracks in full space. The 13th US Congress on Computational Mechanics (USNCCM13), San Diego, California, USA, July 26-30, 2015.
[6] Zhao Guo, Yijun Liu, Hang Ma. Solution of Stress Intensity Factors for 2-D Multiple Crack Problems by the Fast Multipole Boundary Element Method, 36th International Conference on Boundary Elements and Other Mesh Reduction Methods, Oct.22-24, 2013, WIT Transactions on Modelling and Simulation, Vol 56, 417-429, WIT press, ISSN 1743-3.
[7] Ma H, Tang YJ, Yan C. Determining the Residual Stresses of Circular Weld Bead with Eigenstrain BIE as an Inverse Approach. Proceedings of the 5th International Conference on Computational Methods, 28th-30th July 2014, Cambridge, ScienTech Publisher, Paper ID122, 161-167 (ISSN 2374-3948(online)).55X (on-line).
[8] Guo Z, Ma H. Stress intensity factors of periodic crack arrays with eigen COD formulation of boundary integral equation.In: Advances in Heterogeneous Material Mechanics, 941-944. Proceedings of the Third International Conference on Heterogeneous Material Mechanics (ICHMM), May 22-26, 2011, Shanghai, China. Jinghong Fan, Junqian Zhang, Haibo Chen, Zhaohui Jin. DEStech Publication Inc. 439 North Duke Street, Lancaster, Pennsylvania, 17602, USA.
[9] Ma H, Wang Y, Qin QH. Determination of welding residual stresses by inverse approach with eigenstrain formulations of boundary integral equation. Journal of Physics: Conference Series 290 (2011) 012012, International Conference on Inverse Problems 2010, Dec. 13-17, 2010 Hong Kong (DOI: 10.1088/1742-6596/290/1/012012)
[10] Ma H, Qin QH. Three-dimensional eigenstrain formulation of boundary integral equation method for spheroidal particle-reinforced materials. In: Advances in Boundary Element Techniques XI, Proceedings of the 11th international Conference, Ch Zhang, MH Aliabadi and M Schanz (Eds.) Berlin, Germany, 12-14 July 2010, 202-207, Published by EC Ltd, United Kingdom (ISBN 978-0-9547783-7-8).
[11] Hang Ma, Qing-Hua Qin, Vladimír Kompiš. Computational model and solution procedure for inhomogeneous materials with eigen-strain formulation of boundary integral equations, In: (Conference on) Composites with Micro- and Nano-Structure in Series ‘Computational Modelling and Experiments’, Vol 9, Vladimír Kompiš (ed.), Dordrecht, Springer, 2008, pp239-255 (ISBN: 978-1-4020-6974-1). MAY 28-31, 2007 Liptovsky, SLOVAKIA.
[12]马杭,郭钊,秦庆华.二维多项式本征应变边界积分方程及其数值验证.第十二届现代数学和力学会议论文集, p93-99 ( 2010年8月11日-14日,贵阳).
[13]马杭,郭钊,徐凯宇.多裂纹应力强度因子的本征COD边界积分方程解法.第十一届现代数学和力学(MMM-XI)学术会议论文集, p74 (2009年7月23-25日)兰州:兰州大学出版社, ISBN: 978-7-311-03367-5.
[14] Ma H, Kamiya N. Boundary integral formulation for two-dimensional initial strain problems. Boundary elements XXI; Proceedings of the 21st World Conference on the Boundary Element Method (BEM 21), Oxford, United Kingdom; Aug. 1999 (A00-19551 04-31). pp. 661-670. 1999.
科研项目
[1]国家自然科学基金面上项目,广义多相固体的本征变量边界积分方程数值算法的研究,主持,2017/01-2020/12
[2]上海樟祥电器成套有限公司,新型冷弯组合结构电缆桥架的开发研究,参与,2019/05-2019/10
[3]上海樟祥电器成套有限公司,新型不锈钢彩涂板电缆桥架的结构性能研究,参与,2018/07-2019/07
[4]国家自然科学基金面上项目,多尺度多裂纹固体的本征COD边界积分方程数值模拟,主持,2013/01-2016/12
讲授课程
[1]理论力学
[2]材料力学
[3]分析力学
[4]断裂力学
[5]实验固体力学
[6]焊接结构
学术兼职
[1]中国焊接学会X委委员,1997-1999;
[2]中国机械工程学会高级会员,1997-2004;
[3]中国力学学会高级会员,2010-2016