姓名:郭战胜
办公室:延长校区力学所312室
电话:13621920499(微信同号)
通信地址:上海市延长路149号189信箱,邮编:200072
电子邮件:davidzsguo@shu.edu.cn; davidzsguo@t.shu.edu.cn
【工作经历】
2016/03 至今,上海大学,力学与工程科学学院,教授
2009/03-2010/09,美国哈佛大学工程和应用科学学院,访问学者
2006/09-2016/01,上海大学,上海市应用数学和力学研究所,副研究员
2004/07-2006/07,同济大学,航空航天与力学学院,博士后
1996/07-1999/09,中国建筑三局一公司上海分公司,技术员
【教育经历】
2001/09-2004/07,哈尔滨工业大学,航空航天学院,博士研究生
1999/09-2001/07,哈尔滨工业大学,土木工程学院,硕士研究生
1993/09-1996/07,重庆大学,土木工程学院,学生
【研究方向】
电化学能源材料的力-化耦合:主要关注锂离子电池、锂硫电池等电极材料及其整体电池性能的化学反应下的力学性能演化,为电化学能源转换与储能材料的长期使用提供理论指导;
薄膜材料力学:主要关注高分子薄膜、金属薄膜及各类包装用复合膜的力学性能及其使用过程中的力学性能变化等;
介电弹性体力电耦合:主要关注介电弹性体力电耦合下的致动器结构设计与数值模拟。
【主要科研项目】
[1] 国家自然科学基金面上项目:制备工艺下锂离子电池电极的流变特性、微结构演化和界面粘结性能,执行年度:2022/01-2025/12
[2] 国家自然科学基金面上项目:基于多孔电极图像的多尺度多物理场建模与计算,执行年度:2020/01-2023/12
[3] 国家自然科学基金面上项目:充放电循环下锂离子电池电极的结构变形、分层和锂枝晶生成,执行年度:2015/01-2018/12
[4] 国家自然科学基金青年项目:基于多场耦合的厚截面树脂基复合材料优化与控制研究,执行年度:2008/01-2010/12
[5] 国家自然科学基金重点项目:锂离子电池化学反应-相变-变形耦合、开裂和分层的研究(参与人中排名第二),执行年度:2014/01-2018/12
[6] 上海市自然科学基金项目:锂电池硅基薄膜电极充放电过程中的变形计算和测量,执行年度:2012/07-2015/06
【主讲课程】
[1] 材料力学(土木专业本科生,2007-2022)
[2] 工程力学(机械类专业本科生)
[3] 断裂力学(力学专业本科生)
[4] 张量分析与连续介质力学(力学专业本科生)
[5] 力学的发现——变形与破坏(新生研讨课)
[6] 材料本构关系及弹塑性力学(力学专业研究生)
[7] 微细观力学(力学专业研究生,2010-2015)
【主编教材】
[1] 材料力学(第二版),同济大学出版社有限公司,2015.12
[2] 材料力学(英文版)(第二版),同济大学出版社有限公司,2020.12
【主要代表性论文】
1. Zhou, Heyang; Gao, Li Ting; Li, Yimeng; Lyu, Yuhang; Guo, Zhan-Sheng, Electrochemical performance of lithium-ion batteries with two-layer gradient electrode architectures. Electrochimica Acta, 2024, 476:143656.
2. Gao, Li Ting; Lyu, Yuhang; Guo, Zhan-Sheng, External pressure affecting dendrite growth and dissolution in lithium metal batteries during cycles. ACS Applied Materials & Interfaces, 2023, 15: 58416−58428.
3. Huang, Pingyuan; Gao, Li Ting; Guo, Zhan-Shen, Electrochemo-mechanical response of all solid-state batteries: Finite element simulations supported by image-based 3D reconstruction of X-ray microscopy tomography. Electrochimica Acta, 2023, 463:142873.
4. Gao, Li Ting; Huang, Pingyuan; Guo, Zhan-Sheng, Understanding charge-transfer and mass-transfer effects on dendrite growth and fast charging of Li metal battery. Journal of The Electrochemical Society, 2023, 170: 050512.
5. Li, Yimeng; Huang, Pingyuan; Gao, Li Ting; Zhao, Chunwang; Guo, Zhan-Sheng, Data-driven state of health estimation for lithium-ion batteries based on universal feature selection. Journal of The Electrochemical Society, 2023, 170: 040507.
6. Huang, Pingyuan; Gao, Li Ting; Lu, Bo; Feng, Jiemin; Guo, Zhan-Sheng, Analytical and experimental investigation of the mode-II energy release rate of electrodes using a plasticity-assisted zero-degree peeling configuration. Engineering Fracture Mechanics, 2023, 284: 109276.
7. Gao, Li Ting; Huang, Pingyuan; Guo, Zhan-Sheng, Critical role of pits in suppressing Li dendrites revealed by continuum mechanics simulation and in situ experiment. Journal of The Electrochemical Society, 2022, 169: 060522.
8. Huang, Pingyuan; Gao, Li Ting; Guo, Zhan-Sheng, Elastoplastic model for chemo-mechanical behavior of porous electrodes using image-based microstructure. International Journal of Solids and Structures, 2022, 254–255: 111903.
9. Gao, Li Ting; Huang, Pingyuan; Guo, Zhan-Sheng, Elucidating the role of rational separator microstructures in guiding dendrite growth and reviving dead Li. ACS Applied Materials & Interfaces, 2022, 14: 41957−41968.
10. Wu, Yang; Huang, Pingyuan; Gao, Li Ting; Guo, Zhan-Sheng, Modeling contact behavior of multiparticles and particle–current collector contact in porous electrode. Energy Technology, 2022, 10:2200786 (封面文章).
11. Tian, Hao.; Gao, Li Ting; Guo, Zhan-Sheng, Microstructural adjusting crack evolution of polycrystalline NCM particle during charge/discharge cycle. Journal of The Electrochemical Society, 2022, 169: 090513.
12. Tian, H.; Gao, L.T.; Huang, P.Y.; Li, Y.M.; Guo, Z.-S., Simulation of intergranular fracture behavior inside randomly aggregated LiNixCoyMn1-x-yO2 polycrystalline particle. Engineering Fracture Mechanics, 2022, 266: 108381.
13. Wu Y, Guo Z-S. Modeling Li-ion concentration distribution and stress of porous electrode particles considering binder and direct particle contact. Journal of Energy Storage, 2021, 44: 103315.
14. Wu Y, Guo Z-S. Concentration distribution and stresses in porous electrodes with particle-particle contact. Journal of The Electrochemical Society, 2021, 168: 090507.
15. Huang P, Guo Z-S. Li-ion distribution and diffusion-induced stress calculations of particles using an image-based finite element method. Mechanics of Materials, 2021, 157: 103843.
16. Cai X, Guo Z-S. Influence of Li concentration-dependent diffusion coefficient and modulus hardening on diffusion-induced stresses in anisotropic anode particles. Journal of The Electrochemical Society, 2021, 168: 010517.
17. Huang P, Liu C, Guo Z-S, Feng J. Analytical model and experimental verification of the interfacial peeling strength of electrodes. Experimental Mechanics, 2021, 61: 321–330.
18. Gao L T, Huang P, Feng J, Zhu R, Guo Z-S. In situ characterization and phase-filed modeling of the interaction between dendrites and gas bubbles during an electrochemical process. ChemElectroChem, 2021, 8(15): 2881-2887.
19. Gao L T, Guo Z-S. Effects of optimized electrode surface roughness and solid electrolyte interphase on lithium dendrite growth. Energy Technology, 2021, 9(7): 2000968.
20. Gao L T, Guo, Z-S. Phase-field simulation of Li dendrites with multiple parameters influence. Computational Materials Science, 2020, 183: 109919.
21. Cai X, Guo Z-S. Coupled mechano-diffusion J-integral in active particles under the influence of binder. Engineering Fracture Mechanics, 2020, 231: 107031.
22. Huang, Ping-Yuan; Guo, Zhansheng; Feng, Jie-Min, General model of temperature-dependent modulus and yield strength of thermoplastic polymers. Chinese J. Polym. Sci. 2020, 38, 382–393
23. Guo Z-S, Liu C, Lu B, Feng J. Theoretical and experimental study on the interfacial adhesive properties of graphite electrodes in different charging and aging states. Carbon, 2019, 150: 32-42.